P - 1989

(Pages	3 : 3	1
(i ages	.	"

Reg.	No.	:	 	 	 	 	

Name	e :						

Third Semester B.B.A. LL.B. (Five Year Integrated) Degree Examination, OCTOBER 2022.

Paper III - OPERATIONS RESEARCH

(2013 Admission onwards)

Time: 3 Hours

Max. Marks: 80

- I. Answer any five of the following. Each question carries 2 marks. Answer should not exceeds 50 words each.
- 1. Explain the transpose of a matrix with example.
- 2. What is the feasible solution?
- 3. What is the assumption of additivity in linear programming?
- 4. Define a Dual problem.
- 5. Distinguish slack variables and surplus variables in simplex method.
- 6. Define ad-joint of a matrix.
- 7. Define Linear Programming.
- 8. What is mean by the Rank of a matrix?

 $(5 \times 2 = 10 \text{ Marks})$

- II. Answer any four of the following. Each question carries 4 marks. Answer should not exceeds 120 words each.
- 1. What are the essential ingredients of a linear programming problem.
- 2. Write a note on Lowest Cost Entry Method.

3. Find the rank of the matrix
$$A = \begin{bmatrix} 2 & 0 & 5 \\ 3 & -7 & 3 \\ 1 & -4 & 6 \end{bmatrix}$$
.

4. Explain the simplex method to linear programming problem.

5. Let
$$P = \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix}$$
 and $Q = \begin{bmatrix} -1 & 2 \\ 4 & 3 \end{bmatrix}$ find PQ .

6. Explain the properties of the transpose of a matrix.

$$(4 \times 4 = 16 \text{ Marks})$$

- III. Answer any four of the following. Each question carries 6 marks.
- 1. Explain the properties of determinants with examples.

2. Find the ad-joint of the matrix
$$A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$$
.

- 3. Write a note on Saddle point solution
- 4. What are the advantages and limitations of linear programming models?
- 5. Find the initial feasible solution to the following transportation problem by lowest cost entry method.

6. Explain the sequencing problem in detail.

$$(4 \times 6 = 24 \text{ Marks})$$

- IV. Answer any three of the following. Each question carries 10 marks.
- Solve the following LPP using graphical method 1.

Maximize
$$Z = 60X_1 + 40X_2$$

Subject to.

$$2X_1 + X_2 \le 60$$

$$X_1 \le 25$$

$$X_2 \le 35$$

$$X_1, X_2 \ge 0$$

- What are transportation problems? Explain different methods for finding initial 2. solution for it.
- 3. Discuss the network analysis in detail.
- Determine which of the following two-person zero-sum games are strictly 4. determinable and fair. Give optimum strategies for each player in the case of strictly determinable games. orios college

Player B

(a) Player A
$$\begin{bmatrix} 5 & 0 \\ 0 & 2 \end{bmatrix}$$

Player B

(b) Player A
$$\begin{bmatrix} 0 & 2 \\ -1 & 4 \end{bmatrix}$$

Solve the following simultaneous equations using Cramer's Rule

$$5x - 6y + 4z = 15$$

$$7x + 4y - 3z = 19$$

$$2x + y + 6z = 46$$

 $(3 \times 10 = 30 \text{ Marks})$